
Supplementary Methods

We describe the methods used for constructing and annotating chromatin
interaction networks in detail as well as methods used for analyzing these
networks in QuIN.

Network Construction

Chromatin interaction networks are constructed in three steps: (1) Node
Creation, (2) Edge Creation, and (3) Connected Component Discovery. We
describe each method in detail below including both available methods for
defining nodes within the network.

Node Creation

Method 1: Pre-Defined Node Locations

With additional data provided for defining nodes, nodes are initially created
using the node definitions provided. If the regions within the data are found
to be overlapping, then a step is performed to merge overlapping regions
together into one region. The remainder of the algorithm focuses on deter-
mining the interaction anchors that overlap with the nodes in the network
which is necessary for defining the edges of the network. For this, both nodes
and anchors are separated based on chromosome where each list is sorted by
start position. For each chromosome, the corresponding list of nodes and
anchors are iterated concurrently as follows: Select the first node in the
sorted list and iterate over all anchors until the next anchor's start position
is greater than the node's end position. Each anchor is compared with the
current node as well as the next node in the list to determine whether or
not the anchor overlaps with either of these nodes after extending the nodes
by the extend parameter in both directions. If an anchor overlaps with both
nodes with extension, another comparison is made without extension. If only
one node overlaps with the anchor without extension, then the anchor is as-
signed to the overlapping node. If both nodes are still overlapping with the
anchor, then the node that is overlapping with the anchor greater than half
its size is assigned. In the case that neither node overlaps without extension,
then a final comparison is made with extension again, checking if the anchor
overlaps with one node (with extension) greater than half the length of the
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anchor while overlapping the other node less than half. If no assignment can
be made, then the interaction is categorized as ambiguous and will not be
considered in the edge creation step.

Method 2: Defining Nodes with Interaction Anchors

Using only the interaction data, the second method defines nodes by merging
interaction anchors. To merge, anchors are first separated based on chromo-
some and sorted by start position. For each chromosome, the corresponding
list is iterated over once, initializing a list to maintain anchors to merge and
maintaining the greatest end position seen. If the next anchor in the itera-
tion has a start position less than that of the greatest end position seen then
the anchor is added to the current list and the end position is updated if the
new anchor's end position is greater than the current greatest end position.
If the next anchor's start position is greater than the current greatest end
position, then the current list of anchors defines a new node in the network
and a new list is created to begin determining the next node in the network.
Performing this procedure over all chromosome defines all nodes represented
in the network. An extend parameter can also be applied which will expand
each anchor by the amount specified in both directions, offering flexibility for
defining nodes. Regardless of the extend amount, nodes will be represented
by the minimum start position and maximum end position of the anchors
that define it.

Edge Creation

Edges are created by first initializing a tree-based map of node id keys, each
referencing a list of interactions. As interactions maintain a reference to their
corresponding anchors and anchors maintain a reference to the nodes they are
assigned in the node creation step, this map is created by iterating over each
interaction once. For each iteration, the key for the map is determined by
concatenating the smallest integer node id with the largest node id (in that
order) using a delimiter and the interaction is added to the list referenced
by the key in the map. If both node ids are the same or one of anchors does
not reference a node, then the interaction is not included. Once the map is
created, edges are created by iterating over the keys and values in the map,
using the key to determine the nodes to use for each edge. Finally, the edges
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Algorithm 1 Node Creation with Interaction Anchors

anchors[]; //array of interaction anchors
nodelist = new List();
chrgroups[] = separateByChromosome(anchors);

for i = 0 to chrgroups.length do
sortByStartPosition(chrgroups[i]);

end for

for i = 0 to chrgroups.length do
sortedanchors = chrgroups[i];
anchorlist = new List();
maxend = sortedanchors[0].endPosition;
anchorlist.add(sortedanchors[0]);
for j = 1 to sortedanchors.length do

if sortedanchors[j].startPosition ≤ maxend + extend ∗ 2 then
anchorlist.add(sortedanchors[j]);

else
nodelist.add(new Node(anchorlist));
anchorlist = new List();
anchorlist.add(sortedanchors[j]);

end if
maxend = max(maxend, sortedanchors[j].endPosition);

end for
nodelist.add(new Node(anchorlist));

end for
return nodelist;
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are filtered based on filtering parameters provided, removing them from the
final network.

Algorithm 2 Edge Creation

interactions[]; //array of interactions in the network
edgemap; //map of node id keys and interaction lists

for i = 0 to interactions.length do
node1id = interactions[i].getAnchor1().getNode();
node2id = interactions[i].getAnchor2().getNode();
if node1id 6= node2id then

minid = min(node1id, node2id);
maxid = max(node1id, node2id);
key = minid + ”, ” + maxid;
if edgemap.containsKey(key) then

edgemap.put(key, newList())
end if
edgemap.get(key).add(interaction[i]);

end if
end for

for each key in edgemap do
nodeids[] = split(K,”,”);
createEdge(nodeids[0], nodeids[1], edgemap.get(K));

end for

Connected Component Discovery

With the nodes and edges created, connected components are determined in
linear time by maintaining a Boolean array of visited nodes and perform-
ing Breadth-First Search on every node that has not yet been visited. The
algorithm for this process simply iterates over the list of nodes where in
each iteration, if the node has not been visited yet, a breadth-first search is
performed putting all nodes and edges visited into the same connected com-
ponent. Nodes visited when performing a breadth-first search are marked as
visited such that breadth-first search is not repeated on the same component.
After all nodes have been visited, all connected components in the network
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have been identified. Finally, single node components are removed from the
network as they do not provide any interaction information and have proven
to significantly increase the computational time for node annotation which
is database query driven.

Algorithm 3 Connected Component Discovery

nodes[]; //array of nodes in the network
visited[]; //boolean array of visited nodes
componentlist; //list of connected components discovered

for i = 0 to nodes.length do
if visited[nodes[i].id] = FALSE then

component = breadthF irstSearch(nodes[i]);
markNodesAsV isited(component, visited);
componentlist.add(component);

end if
end for
return componentlist;

Network Annotation

Annotations on the network are performed using database queries where the
list of annotations are first converted to genomic coordinates and are then
queried against the nodes in the network to determine the overlap between
them, checking that chromosomes are equivalent and start positions of the
annotation and node are less than or equal to the end positions of each other.
Once the list of nodes is determined, an index is then saved in the database
for future visualizations and analyses.

Target Discovery

Target discovery is performed by assigning source and target annotations
and performing breadth first search on every node annotated with a source
annotation. All shortest paths from nodes with the source annotations to
nodes with target annotations are maintained and reported.
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Annotation Interaction Enrichment

Annotation Interaction Enrichment considers the annotations among all edges
within the component threshold and counts the number of times an edge has
a certain pairing of annotations as observed counts. Expected counts can be
determined by one of two methods of the user’s choosing:

Theoretical: The theoretical expected number of edges with each configu-
ration of annotations are determined using the following formula where |a|
represents the number of nodes with annotation a, |b| represents the number
of nodes with annotation b, |E| represents the total number of edges in the
network, and |N | represents the total number of nodes in the network:

E[a, b] = 2|E|
[
|a|
|N |

] [
|b|

|N | − 1

]
When the annotations are the same, the following formula is used instead:

E[a, a] = |E|
[
|a|
|N |

] [
|a| − 1

|N | − 1

]

Permutation: Expected frequencies derived from permutations are calcu-
lated by randomly reassigning nodes in the network with each annotation a
number of times specified by the user (between 1 and 100,000). The frequency
of interactions are calculated between annotations and the average over all
permutations is used as the expected number of edges for each annotation
pair. P-Values using the null distribution derived from the permutations are
calculated by performing a two-tailed test, counting the number of permu-
tations falling greater than or less than the absolute value of the observed
frequency in the distribution.

For each method, a heatmap is produced by using the log2 ratio of the ob-
served over expected values. P-Values using the binomial test are also calcu-
lated and provided.
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Case Study: Network Construction

The MCF7 interaction network was constructed using replicate 4 of MCF7
ChIA-PET data from ENCODE[1], accession GSM970209. To define the
nodes in the network, we used peaks from DNASE-Seq which define open
chromatin sites. For this, two replicates of MCF7 DNASE-Seq bam files
from ENCODE[1], accession GSM816627, were merged using SAMTools1 [2]
and peaks were called using MACS22 [3]. The interaction network was then
constructed by extending the anchors by 250bp and using default values for
the remaining parameters3.

Case Study: Network Annotation

The MCF7 network was annotated with the 761 Non-Coding Variants (NCVs)
for MCF7 obtained from COSMIC4 [4] (cancer.sanger.ac.uk) as well as with
the following gene lists:

Known Oncogenes: Known oncogenes were selected as the union of (1)
Genes tagged by ’Entrez Query: Oncogene’ in CancerGenes [5], manually
reassigning genes which also matched ’Entrez Query: Tumour Suppressor’.
(2) genes amplified and overexpressed in cancer from [6], (3) essential genes
from [7].

Known Tumor Suppressor Genes: Known tumor suppressor genes were
selected as the union of (1) known recessive tumor suppressor genes according
to the Cancer Gene Census [8], (2) homozygously inactivated genes observed
by whole genome sequencing in COSMIC [4], (3) genes tagged by ’Entrez
Query: Tumour Suppressor’ in CancerGenes [5], manually reassigning genes
matching ’Entreze Query: Oncogene’, (4) Human protein coding TSGs from
TSGene database [9].

1SAMtools Version: 1.2 (Using htslib 1.2.1)
2 MACS2 (2.1.0.20150731) Parameters: -g ’hs’ –nomodel –shift -100 –extsize 200 -B

–broad –keep-dup=1
3Node/Anchor Extension: 250, Min Paired Ends/Score Per Edge: 0, Inter-

actions: Intra-Chromosome, Max Intrachromosome Distance (bp): 1000000
4GRCh 37 Archive of the Cell Lines Project: http://grch37-cancer.sanger.ac.uk/

cell_lines/sample/overview?id=905946
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Breast Cancer Genes Associated with Good & Poor Prognosis:
Genes selected to be associated with good and poor prognosis of breast can-
cer were selected based on those described by [10].

Known Oncogenes & Tumor Suppressor Genes Identified by Davoli:
The top 300 tumor suppressor genes (q value < 0.18) and top 250 oncogenes
(q value < 0.22) were selected from the genes identified by Davoli et al. [11].

Case Study: Promoter Association Methods

Below we define the three methods used for selecting promoters.

Nearest TSS: Promoters defined by nearest transcription start sites (TSS)
were defined with mutations found in the network (for comparison purposes)
and selecting the nearest TSS of genes identified by UCSC’s RefSeq annota-
tion database [12].

Direct Target: Promoters identified by direct targets were selected by first
performing Target Discovery to obtain the shortest paths from the NCV to
promoters (2kb upstream/downstream from the TSS) using ChIA-PET in-
teractions. Direct targets were then selected based on paths with 0 to 1 edges
between the node harboring the NCV and the node overlapping the target
promoter.

Indirect Target: Indirect targets were identified using the same target
discovery used for direct targets but using different cutoffs for the edges found
between the NCV and target promoter. Performing an enrichment analysis
using fisher’s exact test with the cancer gene list over all possible cutoffs
from 2 to 16 (after removing redundancies) revealed promoters 2 to 4 edges
away from the NCV in the network maximized the enrichment significance
(S3 Fig.) and genes were therefore selected based on this criteria.

Case Study: Expression Comparisons Between Nearest
Genes and Network-Related Genes

To estimate the magnitude and significance of cancer-related differential ex-
pression of the genes identified as potential targets of COSMIC somatic mu-
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tations, we performed a negative binomial regression/ANOVA on expression
data obtained form The Cancer Genome Atlas (TCGA) database using the
R/MASS::glm.nb procedure. Specifically, we tested for significant differences
between samples coded as tumor (N=901) and normal (N=92) using base-2
logs of normalized counts of transcripts of these genes. We then graphically
compared the resulting regression coefficients, which estimate fold changes of
expression, between (1) genes located physically nearest to each mutation, (2)
genes whose promoter directly overlaps a mutation or is directly connected
to a network node overlapping a mutation (i.e., direct interaction), and (3)
genes whose promoter is connected to a network node separated by 2 to 4
links (i.e., indirect interaction), after filtering out instances where the nearest
TSS was also part of the network, and making sure no gene was duplicated
in either of these three categories. Finally, we repeated the above procedure
comparing expression data between MCF7 and MCF10A bulk mRNA-seq
samples [13] obtained from the Gene Expression Omnibus, accession number
GSE52712, using the online tool GEO2R to compute regression coefficients
and P-values.

Case Study: Enrichment of Cancer Related Genes

To determine whether a set of genes is enriching for a particular set of cancer
related genes (e.g. Tumor Suppressor or Oncogenes) we used Fisher’s exact
test by providing the 2x2 contingency table of values counting the number of
genes selected (e.g. genes selected by direct or indirect targets), the number
of these genes in the intersection of the cancer related gene set of interest
among the universe of all genes which was calculated to be the intersection
of genes in the UCSC refseq database and the genes identified in TCGA. S2
Table provides the number of genes in each of these categories to calculate
the 2x2 contingency table used for the enrichment of non-coding variants and
cancer related gene sets. For calculating the P-Value, we used the fisher.test
method in R under the two-tailed alternative hypothesis.

Case Study: Gene Co-Expression Analysis

To compare the co-expression of genes between direct, indirect, and genes
without any chromatin interactions between them, we used expression data
from TCGA tumor samples and filtered all genes with too many missing
values or zero variance. After filtering, we calculated the matrix of pearson
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correlations as well as a matrix representing the minimum number of edges
between every pair genes found within the network. The correlations were
then categorized as “Direct”, “Indirect (2-4)”, “All Indirect”, and ”No In-
teraction” based on having minimum edges of 1, 2 − 4, > 1, and having no
path of edges respectively within the corresponding minimum edge matrix.
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